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Abstract
Training a high quality acoustic model with a limited database
and synthesizing a new speaker’s voice with a few utterances
have been hot topics in deep neural network (DNN) based statis-
tical parametric speech synthesis (SPSS). To solve these prob-
lems, we built a unified framework for speaker adaptive train-
ing as well as speaker adaptation on Bidirectional Long Short-
Term Memory with Recurrent Neural Network (BLSTM-RNN)
acoustic model. In this paper, we mainly focus on speaker iden-
tity control at the input layer of our framework. We have investi-
gated i-vector and speaker code as different speaker representa-
tions when used in an augmented input vector, and also propose
two approaches to estimate a new speaker’s code. Experimental
results show that the speaker representations input to the first
layer of acoustic model can effectively control speaker iden-
tity during speaker adaptive training, thus improving the synthe-
sized speech quality of speakers included in training phase. For
speaker adaptation, speaker code estimated from MFCCs can
achieve higher preference than other speaker representations.
Index Terms: speaker adaptive training, speaker adaptation,
speaker code, i-vector, RNN-BLSTM

1. Introduction
Compared with unit-selection and concatenative approaches,
Statistical Parametric Speech Synthesis (SPSS) is preferred be-
cause it can generate natural sounding synthetic speech with
rather small corpus and vary speaker identity and speaking
styles flexibly. Recently, Deep Neural Network (DNN) has sig-
nificantly advanced the performance of SPSS. However, it still
suffers from necessity of a large recording corpus of one speaker
to train a high quality acoustic model [1, 2, 3, 4, 5, 6]. Mean-
while, significant efforts have been made to generate a new
speaker’s voices with only a few utterances [5, 6, 7, 8].

Speaker adaptive training is one of the most effective ap-
proaches to train a high quality acoustic model with a limited
database [5, 6, 9, 10]. In speaker adaptive training, acoustic
model is jointly trained utilizing multiple speakers’ data. For
DNN, it has been experimentally proved that the shared hidden
layers can benefit synthesized speech of each speaker from the
knowledge of others [5, 6]. Speaker adaptation has been devel-
oped for generating an arbitrary speaker’s voice with minimum
adaptation data, and the adaptation process is usually performed
on a well trained acoustic model [7, 9, 11]. However, both
speaker adaptive training and speaker adaptation techniques
need to control speaker identity precisely.

Generally, there are three ways to control the speaker iden-
tity in a DNN-based acoustic model. The first way is to control
the speaker identity at the input layer, such as adding speaker
information as auxiliary input features [7, 8]. The second one
is to control the speaker identity with specially designed hidden

layers, such as learning hidden unit contribution (LHUC) [7].
And the last one is to control the speaker identity near the out-
put layer space, such as speaker dependent regression or feature
space transformation [5, 6, 7].

In our work, we mainly focus on speaker identity control
at the input layer. Augmented speaker identity vectors are pre-
pared independently from linguistic features and these vectors
can distinguish different speakers very well even if the speakers
share the same linguistic labels. In addition to i-vector, speaker
code is another speaker representation which has been widely
used in DNN-based speaker adaptation in automatic speech
recognition [12, 13, 14, 15]. In ASR, a new speaker’s code is
usually estimated from the training speakers in a backpropoga-
tion manner [14, 15]. In SPSS, the estimation of a new speaker’s
code remains to be solved.

In this paper, we conduct an exploring and comparative
study on the controllability of different speaker identity repre-
sentations when they are used in augmented inputs for speaker
adaptive training and speaker adaptation in the same frame-
work. Instead of DNN, Bidirectional Long Short-Term Mem-
ory with Recurrent Neural Network (BLSTM-RNN) acoustic
model is employed due to its strong capability of learning long-
range dynamics of speech as well as variation in speaker iden-
tity. We first briefly describe the framework of multiple speaker
BLSTM-RNN-based speech synthesis. Then we introduce dif-
ferent speaker identity representations including i-vector and
speaker code. We also propose two approaches especially to es-
timate a new speaker’s code. Analytical experiments are done
to examine the performance of each speaker representation in
both speaker adaptive training and speaker adaptation.

2. Framework for multi-speaker speech
synthesis and adaptation

In this section, we mainly introduce our experimental frame-
work used for speaker adaptive training and speaker adaptation.
In order to examine the performance of different speaker rep-
resentations when they are input to the first layer, only con-
ventional BLSTM-RNN acoustic model is adopted, with no
specially designed layer or feature space mapping as post-
processing. The schematic diagram of our framework is shown
in Fig.1.

In this work, we utilize a hybrid network structure which
includes both feedforward and BLSTM-RNN layers in acoustic
model. The feedforward layer, trained with a back-propagation
learning algorithm [16], is widely used in many practical ap-
plications. But the assumption of sample independence results
in limited ability of modeling context information as well as
acoustic signals [3, 17]. Bidirectional RNN can access both the
preceding and succeeding input contexts with two separate hid-
den layers. An LSTM architecture, can overcome the gradient
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Figure 1: BLSTM-RNN based multi-speaker speech synthesis
model

vanishing problem that prevents RNN from modeling long-span
relations in both linguistic and acoustic domains. Deep bidirec-
tional LSTM-RNN is able to build up progressively higher level
representations of input data, which is a crucial factor of the re-
cent success of hybrid systems [17].

Different from the conventional individual speaker’s syn-
thesis, the network is trained with multiple speakers’ data, and it
takes linguistic features as input as well as speaker-specific fea-
tures, such as speaker code or i-vector. With augmented speaker
identity representations, inputs with the same linguistic content
but spoken by different speakers can be distinguished. Differ-
ent from Fan’s work in [5], not only hidden layers but also the
output layer is shared across all the speakers.

During the speaker adaptive training phase, it is very cru-
cial to train the network for all the speakers simultaneously,
which means that each batch should consider the data from all
the speakers during the stochastic gradient decent (SGD) pro-
cedure, and training data also needs to be shuffled across all the
speakers. Since BLSTM-RNN can take use of both past and
future information, it can capture the dynamics in speeches as
well as speaker identity.

In synthesis, the speeches of any speaker who had ever
joined in speaker adaptive training can be synthesized through
the well-trained multi-speaker model with the help of speaker
specific representation. In speaker adaptation phase, a new
speaker’s representation is firstly estimated, then appended to
linguistic features. The well-trained multi-speaker model is
updated with the new speaker’s data. The error of new train-
ing/adaptation samples are back-propagated to the whole net-
work. The new speaker’s speech can be generated with the
well-updated model.

3. Speaker identity representations
This section mainly introduces different speaker identity repre-
sentations including i-vector and speaker code. After that, we
propose two methods for speaker code estimation.

3.1. I-vector

I-vector has been widely used in both speaker and speech recog-
nition. It is a low-dimensional vector, the cosine distance be-
tween two different i-vectors represents the difference of two
speakers: the smaller the distance is, the closer the speakers
are, and vice versa. According to [18], by factor analysis, a
speaker’s supervector M is approximated as

M ≈ m+Tw, (w ∼ N (0, I)), (1)

where m denotes the speaker-independent supervector, which
can be extracted easily from the universal background model
(UBM), often obtained as GMM. T is a total variability matrix
and w is a weight vector, so called i-vector.

Since the robust estimation of the total variability matrix
T requires a large amount of data, additional data need to be
collected while the number of speakers are limited.

3.2. Speaker Code

Speaker code has achieved promising results in speaker adapta-
tion [14] of automatic speech recognition task. As described in
[12], if there are K speakers’ corpora for model training, we can
simply use zc = (z1,c, z2,c, · · · , zk,c, · · · zK,c) to represent the
c-th speaker’s code. zk,c is defined as follows:

zk,c =

{
1 (k = c),

0 (k ̸= c).
(2)

Although there are many works related to estimate a new
speaker’s code in ASR, but no work has been reported in SPSS
area to the best of our knowledge.

3.2.1. Speaker code estimation from i-vector

Usually, a speaker’s i-vector is estimated from his/her utterance-
based i-vectors. Those utterance-based i-vectors are able to cap-
ture the nuances in speaking style of different utterances, even
these utterances are spoken by the same speaker. By collecting
utterance-based i-vectors from a single speaker, we can estimate
the i-vectors’ distribution of that speaker, which is assumed to
follow the single Gaussian distribution. If we have K speakers
and their corresponding K Gaussian distributions, we can de-
fine K-mixture GMM with even weights, assuming that prior
probability of each speaker is the same:

p(x) =
K∑

k=1

1

K
N (x|µk,Σk) (3)

In equation (3), x represents utterance-level i-vectors , µk and
Σk are the mean and variance of utterance-based i-vectors of k-
th speaker. The speaker code of a new speaker is estimated as a
vector that composed of per-mixture posterior possibility of this
K mixture GMM model. Given his/her utterance-based i-vector
xc, the k-th component of the speaker code γk is calculated as:

γk = p(k|xc) =
1
K
N (xc|µk,Σk)∑K

j=1
1
K
N (xc|µj,Σj)

(4)

The new speaker code can be represented as:

z̃c = (γ1, γ2, · · · , γK) (5)

3.2.2. Speaker code estimation from MFCCs

Mel-frequency cepstral coefficients (MFCCs) include various
kinds of information not only linguistic but also non-linguistic
such as speaker identity. Since speaker identity was not drasti-
cally changed in an utterance, models which are able to cap-
ture the information lying on the long time span are prefer-
able. Hence, direct estimation of speaker code from MFCCs
sequences utilizing BLSTM-RNN is investigated in this paper.
The input of the network is a gender mark of a speaker and
his/her MFCCs for each frame, and the output is always the
speaker code of that speaker. This network need to be jointly
trained with different speakers’ parameters. To get a better clas-
sification, a softmax output layer is employed.
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4. Experimental setup
In our experiments, the data we used is the CMU ARCTIC cor-
pora [19], which contain 7 speakers (5 males, and 2 females)
with parallel sentences. For speaker adaptive training, we chose
900 utterances from each of 4 US English speakers (2 males
and 2 females) as training dataset, 100 utterances as validation
set, and 50 utterances as testing set. The sentences were com-
mon among the four speakers. For speaker adaptation, the other
three speakers were treated as the new target speakers. For each
speaker, we prepared two training sets, one set had 100 utter-
ances and the other had 30 utterances. 10 sentences were used
for validation and 50 utterances were used for testing. For both
speaker adaptive training and speaker adaptation, transcriptions
of testing sets were common and never covered in training or
validation set.

All the wav files were converted into 16KHz sampling
raw files, windowed by 25ms. The frame shift is 5ms. Lin-
guistic features were extracted and converted to 307 dimen-
sional vectors. State index and frame index were also attached.
State-level alignment was done with the help of HTS [20]. In
speaker adaptive training with speaker representations, gender
mark as well as i-vector or speaker code were appended to
each frame of the linguistic features. Acoustic features includ-
ing 39-dimensional mel-cepstral coefficients, F0 in log-scale,
26-dimensional Band-aperiodicity parameters (BAP), and their
delta and delta-delta features were extracted with the help of
STRAIGHT [21]. A binary value for voiced/unvoiced decision
was also attached. Linear interpolation of F0 was done over
unvoiced segments.

The neural network of speaker independent acoustic model
had four hidden layers, including 2 feedforward layers and 2
BLSTM-RNN layers, and each of them had 300 nodes. To train
the acoustic model, both input and target features were normal-
ized to zero mean and unit variance. The learning rate was set
to 1e-5 and the momentum was set to 0.6. The training was
stopped if no improvement was observed within the latest 20 it-
erations. For speaker adaptation, the adaptation data were used
to update the well-trained speaker independent model until no
improvement was observed within the latest 20 iterations. Im-
plementation of the network training was done with the help of
a machine learning library “CURRENNT” [22].

STRAIGHT was employed to synthesize waveforms from
predicted acoustic parameters. Before waveform generation,
global variances were used with Maximum Likelihood Parame-
ter Generation (MLPG) algorithm to enhance the dynamic prop-
erties of synthetic speech. To calculate the global variances, the
variance of each sentence’s acoustic features was built as a sin-
gle GMM.

To extract i-vectors, a gender independent 2048-mixture
UBM and 30-dimension total variability matrices were trained
with the EM algorithm, using NIST SRE corpora (2004, 2006,
2008), Switchboard II Phase 1/2/3, Switchboard Cellular I/II
and the CMU ARCTIC corpora [23, 24, 25, 26, 27, 19]. Then
the i-vectors of the input speeches were extracted using the
UBM and T matrices.

Speaker codes of the 4 US speakers were prepared accord-
ing to equation (2). To estimate a new speaker’s code using
i-vector, 4 mixture GMM was trained with utterance-based i-
vectors of the 4 US speakers. For speaker code estimation using
MFCCs, 13-dimensional MFCCs parameters were extracted.
The neural network had 6 layers, including 3 feedforward lay-
ers and 3 BLSTM-RNN layers, the set for the number of nodes
in each layer is [50, 200, 400, 300, 200, 100]. A softmax output
layer and cross entropy objective function were utilized. The
learning rate was set to 1e-4 and the momentum was set to 0.5.

5. Evaluation and discussion
Objective measures used in this paper are Mel-cepstral Distor-
tion (MCD) [28], F0 distortion in the root mean squared error
(RMSE), BAP distortion and voiced/unvoiced (V/UV) swap-
ping errors.

As for subjective evaluation, we conducted AB preference
tests to evaluate the preference in naturalness and ABX prefer-
ence tests to evaluate similarity. Here, A and B stand for syn-
thesized speech samples generated by two different systems. X
represents the target speaker’s raw speech. For naturalness test,
20 English speakers were asked to select A or B which is more
natural and comfortable. For similarity test, the listeners were
asked to select A or B based on their perceptual similarity to X
in terms of speaker identity. If no difference is perceived, the
listeners were asked to select the other option, that is neutral.
In each experimental group, 20 parallel sentences are selected
randomly from testing sets of each system.

In this section, SI represents the speaker independent model
which is trained by multiple speakers’ data but without speaker
identity information. SC(O)stands for the original speaker code
as showed in equation (2). SC(I) means speaker code estimated
from i-vectors and SC(M) is for speaker code estimated from
MFCCs.

5.1. Evaluations for multi-speaker speech synthesis

We use the 4 US speakers who have joined in speaker adaptive
training to evaluate the quality for multi-speaker synthesis. Ta-
ble 1 shows the average objective evaluation results over female
and male speakers respectively. Individual modeling is trained
with only the target speaker’s data and used as baseline.

From table 1, we can find that SI presents much higher dis-
tortion than baseline in all kinds of objective measures . But
when i-vector or speaker code is attached to the input feature,
it can outperform the baseline in all aspects. For the female
speakers, SI+SC(O) achieves best performance in F0 RMSE and
V/UV error rates while SI+i-vector gives the lowest distortion in
MCD and BAP. For the male speaker, SI+SC(O) gives the low-
est distortion in MCD, F0 and BAP while SI+i-vector shows the
lowest V/UV error rates.

Subjective evaluation results are showed in Fig.2. SI +
SC(O) and SI + i-vector gets much higher preference than the
individually modeling while individual modeling is preferred
than SI. Among all systems, SI + SC(O) achieves the most pref-
erence in terms of both naturalness and similarity, and we hope
it can achieve good performance in speaker adaptation.

The evaluation results not only suggest that the shared
hidden layers can help to improve the quality of synthesized
speech, but also demonstrate that the speaker representations in-
put to the first layer of BLSTM-RNN can control speaker iden-
tity very effectively during speaker adaptive training.

5.2. Evaluations for speaker adaptation

The average objective evaluation results of the new speaker’s
adaptation are presented in Table 2. Individual speech synthesis
systems are trained with the same adaptation data of the new
speaker. To illustrate the effect of adaptation, we also trained
an individual synthesis system with 900 sentences of the target
speaker and the distortions are showed in Table 3.

According to Table 2, distortions of adapted speeches are
much lower than the distortion of individual synthesis, which
suggests the importance of model initialization. For speaker
adaptation, the neural network is updated based on a well-
trained multiple speakers’ acoustic model, but for individual
synthesis it is initialized randomly.
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Table 1: Objective evaluations for multi-speaker’s speech synthesis. Individual synthesis is trained by only one speaker’s data.
Speaker Female Male

Experimental Systems
MCD
(dB)

F0

RMSE(Hz)
BAP
(dB)

V/UV
err(%)

MCD
(dB)

F0

RMSE(Hz)
BAP
(dB)

V/UV
err(%)

Individual synthesis 5.45 23.68 6.87 4.37 7.15 15.50 3.52 7.21
SI 5.67 31.40 3.89 4.39 5.52 18.36 3.90 7.24

SI+i-vector 5.04 20.25 3.70 4.02 5.26 13.80 3.29 6.82
SI+SC(O) 5.06 19.96 3.69 4.01 5.24 13.40 3.28 7.09

Table 2: Objective evaluations for new speaker’s adaptation. Individual synthesis is trained using the same data of the target speaker.
Sentences’ number 100 sentences 30 sentences

Experimental Systems
MCD
(dB)

F0

RMSE(Hz)
BAP
(dB)

V/UV
err(%)

MCD
(dB)

F0

RMSE(Hz)
BAP
(dB)

V/UV
err(%)

Individual synthesis 8.19 18.16 3.86 14.1 9.06 20.32 4.17 22.6
SI 5.14 20.90 3.31 7.05 5.30 22.56 3.35 7.21

SI+i-vector 5.19 23.02 3.31 7.41 5.28 21.03 3.32 7.70
SI+SC(I) 5.11 19.64 3.30 7.19 5.28 18.76 3.31 7.35
SI+SC(M) 5.16 20.06 3.29 7.32 5.23 18.17 3.29 7.77

Table 3: Objective evaluations for the new speaker’s speech
synthesis using 900 sentences

Experimental System
MCD
(dB)

F0

RMSE(Hz)
BAP
(dB)

V/UV
err(%)

Individual synthesis 7.13 15.06 3.38 7.17
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Figure 2: Subjective evaluations for multi-speaker synthesis in
terms of naturalness (a) and similarity (b).
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Figure 3: Subjective evaluations for speaker adaptation in
terms of naturalness (a) and similarity (b)

From Table 2, we can find a very interesting phenomenon
that the supervised adaptation based on the speaker independent
model can achieve quite small distortion even without i-vector
or speaker code, especially in 100 sentences’ case. This is quite
different from the experimental results of multi-speaker synthe-
sis. It may indicate that speaker information which just input to
the first layer may only have very limited guidance in a super-
vised adaptation way.

By comparing Table 2 and Table 3, it is easy to find that the
adaptation system can obtain less MCD distortions than indi-
vidual speech synthesis using 900 sentences although F0 RMSE
error is a little higher. Among all the systems, estimated speaker
code can achieve the lowest MCD, RMSE of F0 and BAP dis-
tortions, and SI achieves the lowest V/UV error rate.

Another interesting phenomenon is that the speaker code
based adaptation always achieves a slight superior to i-vector
based adaptation in terms of F0 RMSE. This trend also happens
in multi-speaker synthesis. A possible explanation is that the
discrete speaker codes are more robust in F0 prediction than i-
vectors which are more continuous and have strong relationship
to spectral parameters.

Subjective evaluation results are presented in Fig.3. SI +
SC(M) obtains better preference than SI+SC(I) in terms of both
naturalness and similarity. SI+SC(M) also gets higher evalua-
tion than SI+i-vector and SI. Compared with individual synthe-
sis with 900 sentences, SI + SC(M) achieves more preference in
naturalness.

6. Conclusions
In this paper, we mainly investigated the controllability of dif-
ferent speaker representations when they are performed at the
input layer of neural networks. Experimental results showed
that speaker representations input to the first layer of acoustic
model can control speaker identity effectively during speaker
adaptive training, but its impact on the supervised adaptation of
a new speaker is limited. Further, we will explore to perform
speaker identity control at different layers of neural network.
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